Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microlife ; 5: uqae005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623411

RESUMEN

Invasive non-typhoidal Salmonella (iNTS) disease is a serious bloodstream infection that targets immune-compromised individuals, and causes significant mortality in sub-Saharan Africa. Salmonella enterica serovar Typhimurium ST313 causes the majority of iNTS in Malawi. We performed an intensive comparative genomic analysis of 608 S. Typhimurium ST313 isolates dating between 1996 and 2018 from Blantyre, Malawi. We discovered that following the arrival of the well-characterized S. Typhimurium ST313 lineage 2 in 1999, two multidrug-resistant variants emerged in Malawi in 2006 and 2008, designated sublineages 2.2 and 2.3, respectively. The majority of S. Typhimurium isolates from human bloodstream infections in Malawi now belong to sublineages 2.2 or 2.3. To understand the emergence of the prevalent ST313 sublineage 2.2, we studied two representative strains, D23580 (lineage 2) and D37712 (sublineage 2.2). The chromosome of ST313 lineage 2 and sublineage 2.2 only differed by 29 SNPs/small indels and a 3 kb deletion of a Gifsy-2 prophage region including the sseI pseudogene. Lineage 2 and sublineage 2.2 had distinctive plasmid profiles. The transcriptome was investigated in 15 infection-relevant in vitro conditions and within macrophages. During growth in physiological conditions that do not usually trigger S. Typhimurium SPI2 gene expression, the SPI2 genes of D37712 were transcriptionally active. We identified down-regulation of flagellar genes in D37712 compared with D23580. Following phenotypic confirmation of transcriptomic differences, we discovered that sublineage 2.2 had increased fitness compared with lineage 2 during mixed growth in minimal media. We speculate that this competitive advantage is contributing to the emergence of sublineage 2.2 in Malawi.

2.
BMJ Open ; 13(11): e072938, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963701

RESUMEN

INTRODUCTION: Invasive non-typhoidal Salmonellosis (iNTS) is mainly caused by Salmonella enterica serovars Typhimurium and Enteritidis and is estimated to result in 77 500 deaths per year, disproportionately affecting children under 5 years of age in sub-Saharan Africa. Invasive non-typhoidal Salmonellae serovars are increasingly acquiring resistance to first-line antibiotics, thus an effective vaccine would be a valuable tool in reducing morbidity and mortality from infection. While NTS livestock vaccines are in wide use, no licensed vaccines exist for use in humans. Here, a first-in-human study of a novel vaccine (iNTS-GMMA) containing S. Typhimurium and S. Enteritidis Generalised Modules for Membrane Antigens (GMMA) outer membrane vesicles is presented. METHOD AND ANALYSIS: The Salmonella Vaccine Study in Oxford is a randomised placebo-controlled participant-observer blind phase I study of the iNTS-GMMA vaccine. Healthy adult volunteers will be randomised to receive three intramuscular injections of the iNTS-GMMA vaccine, containing equal quantities of S. Typhimurium and S. Enteritidis GMMA particles adsorbed on Alhydrogel, or an Alhydrogel placebo at 0, 2 and 6 months. Participants will be sequentially enrolled into three groups: group 1, 1:1 randomisation to low dose iNTS-GMMA vaccine or placebo; group 2, 1:1 randomisation to full dose iNTS-GMMA vaccine or placebo; group 3, 2:1 randomisation to full dose or lower dose (dependant on DSMC reviews of groups 1 and 2) iNTS-GMMA vaccine or placebo.The primary objective is safety and tolerability of the vaccine. The secondary objective is immunogenicity as measured by O-antigen based ELISA. Further exploratory objectives will characterise the expanded human immune profile. ETHICS AND DISSEMINATION: Ethical approval for this study has been obtained from the South Central-Oxford A Research Ethics Committee (Ethics REF:22/SC/0059). Appropriate documentation and regulatory approvals have been acquired. Results will be disseminated via peer-reviewed articles and conferences. TRIAL REGISTRATION NUMBER: EudraCT Number: 2020-000510-14.


Asunto(s)
Infecciones por Salmonella , Vacunas contra la Salmonella , Adulto , Niño , Humanos , Preescolar , Vacunas contra la Salmonella/uso terapéutico , Hidróxido de Aluminio , Infecciones por Salmonella/prevención & control , Infecciones por Salmonella/tratamiento farmacológico , Salmonella typhimurium , Ensayos Clínicos Controlados Aleatorios como Asunto , Ensayos Clínicos Fase I como Asunto
4.
BioTech (Basel) ; 12(3)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37606441

RESUMEN

Nontyphoidal Salmonella (NTS) is a leading cause of morbidity and mortality caused by enteric pathogens worldwide in both children and adults, and vaccines are not yet available. The measurement of antigen-specific antibodies in the sera of vaccinated or convalescent individuals is crucial to understand the incidence of disease and the immunogenicity of vaccine candidates. A solid and standardized assay used to determine the level of specific anti-antigens IgG is therefore of paramount importance. In this work, we presented the characterization of a customized enzyme-linked immunosorbent assay (ELISA) with continuous readouts and a standardized definition of EU/mL. We assessed various performance parameters: standard curve accuracy, dilutional linearity, intermediate precision, specificity, limits of blanks, and quantification. The simplicity of the assay, its high sensitivity and specificity coupled with its low cost and the use of basic consumables and instruments without the need of high automation makes it suitable for transfer and application to different laboratories, including resource-limiting settings where the disease is endemic. This ELISA is, therefore, fit for purpose to be used for quantification of antibodies against Salmonella Typhimurium and Salmonella Enteritidis O-antigens in human samples, both for vaccine clinical trials and large sero-epidemiological studies.

6.
Methods Protoc ; 5(6)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36548142

RESUMEN

Salmonella Typhimurium and Salmonella Enteritidis are leading causative agents of invasive nontyphoidal Salmonella (iNTS) disease, which represents one of the major causes of death and morbidity in sub-Saharan Africa, still partially underestimated. Large sero-epidemiological studies are necessary to unravel the burden of disease and guide the introduction of vaccines that are not yet available. Even if no correlate of protection has been determined so far for iNTS, the evaluation of complement-mediated functionality of antibodies generated towards natural infection or elicited upon vaccination may represent a big step towards this achievement. Here we present the setup and the intra-laboratory characterization in terms of repeatability, intermediate precision, linearity, and specificity of a high-throughput luminescence-based serum bactericidal assay (L-SBA). This method could be useful to perform sero-epidemiological studies across iNTS endemic countries and for evaluation of antibodies raised against iNTS vaccine candidates in upcoming clinical trials.

7.
Nat Microbiol ; 6(3): 327-338, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33349664

RESUMEN

Bloodstream infections caused by nontyphoidal Salmonella are a major public health concern in Africa, causing ~49,600 deaths every year. The most common Salmonella enterica pathovariant associated with invasive nontyphoidal Salmonella disease is Salmonella Typhimurium sequence type (ST)313. It has been proposed that antimicrobial resistance and genome degradation has contributed to the success of ST313 lineages in Africa, but the evolutionary trajectory of such changes was unclear. Here, to define the evolutionary dynamics of ST313, we sub-sampled from two comprehensive collections of Salmonella isolates from African patients with bloodstream infections, spanning 1966 to 2018. The resulting 680 genome sequences led to the discovery of a pan-susceptible ST313 lineage (ST313 L3), which emerged in Malawi in 2016 and is closely related to ST313 variants that cause gastrointestinal disease in the United Kingdom and Brazil. Genomic analysis revealed degradation events in important virulence genes in ST313 L3, which had not occurred in other ST313 lineages. Despite arising only recently in the clinic, ST313 L3 is a phylogenetic intermediate between ST313 L1 and L2, with a characteristic accessory genome. Our in-depth genotypic and phenotypic characterization identifies the crucial loss-of-function genetic events that occurred during the stepwise evolution of invasive S. Typhimurium across Africa.


Asunto(s)
Evolución Molecular , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Sepsis/microbiología , África/epidemiología , Farmacorresistencia Bacteriana , Variación Genética , Genoma Bacteriano/genética , Genotipo , Humanos , Fenotipo , Filogenia , Plásmidos/genética , Seudogenes , Infecciones por Salmonella/epidemiología , Salmonella typhimurium/aislamiento & purificación , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/fisiología , Sepsis/epidemiología , Sepsis/transmisión , Virulencia
8.
Proc Natl Acad Sci U S A ; 117(34): 20717-20728, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32788367

RESUMEN

Mucosal-associated invariant T (MAIT) cells are innate T lymphocytes activated by bacteria that produce vitamin B2 metabolites. Mouse models of infection have demonstrated a role for MAIT cells in antimicrobial defense. However, proposed protective roles of MAIT cells in human infections remain unproven and clinical conditions associated with selective absence of MAIT cells have not been identified. We report that typhoidal and nontyphoidal Salmonella enterica strains activate MAIT cells. However, S. Typhimurium sequence type 313 (ST313) lineage 2 strains, which are responsible for the burden of multidrug-resistant nontyphoidal invasive disease in Africa, escape MAIT cell recognition through overexpression of ribB This bacterial gene encodes the 4-dihydroxy-2-butanone-4-phosphate synthase enzyme of the riboflavin biosynthetic pathway. The MAIT cell-specific phenotype did not extend to other innate lymphocytes. We propose that ribB overexpression is an evolved trait that facilitates evasion from immune recognition by MAIT cells and contributes to the invasive pathogenesis of S. Typhimurium ST313 lineage 2.


Asunto(s)
Células T Invariantes Asociadas a Mucosa/inmunología , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , África del Sur del Sahara , Antibacterianos , Diarrea/microbiología , Diarrea/mortalidad , Humanos , Evasión Inmune/genética , Evasión Inmune/fisiología , Células T Invariantes Asociadas a Mucosa/metabolismo , Infecciones por Salmonella/inmunología , Salmonella typhimurium/patogenicidad
9.
PLoS Pathog ; 16(8): e1008763, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32834002

RESUMEN

The various sub-species of Salmonella enterica cause a range of disease in human hosts. The human-adapted Salmonella enterica serovar Typhi enters the gastrointestinal tract and invades systemic sites to cause enteric (typhoid) fever. In contrast, most non-typhoidal serovars of Salmonella are primarily restricted to gut tissues. Across Africa, invasive non-typhoidal Salmonella (iNTS) have emerged with an ability to spread beyond the gastrointestinal tract and cause systemic bloodstream infections with increased morbidity and mortality. To investigate this evolution in pathogenesis, we compared the genomes of African iNTS isolates with other Salmonella enterica serovar Typhimurium and identified several macA and macB gene variants unique to African iNTS. MacAB forms a tripartite efflux pump with TolC and is implicated in Salmonella pathogenesis. We show that macAB transcription is upregulated during macrophage infection and after antimicrobial peptide exposure, with macAB transcription being supported by the PhoP/Q two-component system. Constitutive expression of macAB improves survival of Salmonella in the presence of the antimicrobial peptide C18G. Furthermore, these macAB variants affect replication in macrophages and influence fitness during colonization of the murine gastrointestinal tract. Importantly, the infection outcome resulting from these macAB variants depends upon both the Salmonella Typhimurium genetic background and the host gene Nramp1, an important determinant of innate resistance to intracellular bacterial infection. The variations we have identified in the MacAB-TolC efflux pump in African iNTS may reflect evolution within human host populations that are compromised in their ability to clear intracellular Salmonella infections.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Colitis/patología , Variación Genética , Macrófagos/inmunología , Salmonelosis Animal/patología , Salmonella typhimurium/inmunología , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Linaje de la Célula , Colitis/inducido químicamente , Colitis/inmunología , Colitis/microbiología , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Replicación Viral
10.
Microb Genom ; 6(2)2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32022660

RESUMEN

Prophages are integrated phage elements that are a pervasive feature of bacterial genomes. The fitness of bacteria is enhanced by prophages that confer beneficial functions such as virulence, stress tolerance or phage resistance, and these functions are encoded by 'accessory' or 'moron' loci. Whilst the majority of phage-encoded genes are repressed during lysogeny, accessory loci are often highly expressed. However, it is challenging to identify novel prophage accessory loci from DNA sequence data alone. Here, we use bacterial RNA-seq data to examine the transcriptional landscapes of five Salmonella prophages. We show that transcriptomic data can be used to heuristically enrich for prophage features that are highly expressed within bacterial cells and represent functionally important accessory loci. Using this approach, we identify a novel antisense RNA species in prophage BTP1, STnc6030, which mediates superinfection exclusion of phage BTP1. Bacterial transcriptomic datasets are a powerful tool to explore the molecular biology of temperate phages.


Asunto(s)
Bacteriófagos/fisiología , Lisogenia , Transcriptoma , Bacteriófagos/genética , Profagos/genética , Profagos/fisiología , Salmonella/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
11.
PLoS Pathog ; 15(9): e1007948, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31560731

RESUMEN

We have used a transposon insertion sequencing (TIS) approach to establish the fitness landscape of the African Salmonella enterica serovar Typhimurium ST313 strain D23580, to complement our previous comparative genomic and functional transcriptomic studies. We used a genome-wide transposon library with insertions every 10 nucleotides to identify genes required for survival and growth in vitro and during infection of murine macrophages. The analysis revealed genomic regions important for fitness under two in vitro growth conditions. Overall, 724 coding genes were required for optimal growth in LB medium, and 851 coding genes were required for growth in SPI-2-inducing minimal medium. These findings were consistent with the essentiality analyses of other S. Typhimurium ST19 and S. Typhi strains. The global mutagenesis approach also identified 60 sRNAs and 413 intergenic regions required for growth in at least one in vitro growth condition. By infecting murine macrophages with the transposon library, we identified 68 genes that were required for intra-macrophage replication but did not impact fitness in vitro. None of these genes were unique to S. Typhimurium D23580, consistent with a high conservation of gene function between S. Typhimurium ST313 and ST19 and suggesting that novel virulence factors are not involved in the interaction of strain D23580 with murine macrophages. We discovered that transposon insertions rarely occurred in many pBT1 plasmid-encoded genes (36), compared with genes carried by the pSLT-BT virulence plasmid and other bacterial plasmids. The key essential protein encoded by pBT1 is a cysteinyl-tRNA synthetase, and our enzymological analysis revealed that the plasmid-encoded CysRSpBT1 had a lower ability to charge tRNA than the chromosomally-encoded CysRSchr enzyme. The presence of aminoacyl-tRNA synthetases in plasmids from a range of Gram-negative and Gram-positive bacteria suggests that plasmid-encoded essential genes are more common than had been appreciated.


Asunto(s)
Salmonella typhimurium/fisiología , Salmonella typhimurium/patogenicidad , Animales , Elementos Transponibles de ADN , ADN Bacteriano/genética , Genes Bacterianos , Aptitud Genética , Macrófagos/microbiología , Ratones , Plásmidos/genética , Células RAW 264.7 , Salmonelosis Animal/microbiología , Salmonella typhimurium/genética , Virulencia/genética , Virulencia/fisiología
12.
PLoS Negl Trop Dis ; 13(7): e0007540, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31348776

RESUMEN

Over recent decades, Salmonella infection research has predominantly relied on murine infection models. However, in many cases the infection phenotypes of Salmonella pathovars in mice do not recapitulate human disease. For example, Salmonella Typhimurium ST313 is associated with enhanced invasive infection of immunocompromised people in Africa, but infection of mice and other animal models with ST313 have not consistently reproduced this invasive phenotype. The introduction of alternative infection models could help to improve the quality and reproducibility of pathogenesis research by facilitating larger-scale experiments. To investigate the virulence of S. Typhimurium ST313 in comparison with ST19, a combination of avian and insect disease models were used. We performed experimental infections in five lines of inbred and one line of outbred chickens, as well as in the alternative chick embryo and Galleria mellonella wax moth larvae models. This extensive set of experiments identified broadly similar patterns of disease caused by the African and global pathovariants of Salmonella Typhimurium in the chicken, the chicken embryo and insect models. A comprehensive analysis of all the chicken infection experiments revealed that the African ST313 isolate D23580 had a subtle phenotype of reduced levels of organ colonisation in inbred chickens, relative to ST19 strain 4/74. ST313 isolate D23580 also caused reduced mortality in chicken embryos and insect larvae, when compared with ST19 4/74. We conclude that these three infection models do not reproduce the characteristics of the systemic disease caused by S. Typhimurium ST313 in humans.


Asunto(s)
Pollos/microbiología , Insectos/microbiología , Salmonelosis Animal/microbiología , Salmonella typhimurium/patogenicidad , África , Animales , Embrión de Pollo , Modelos Animales de Enfermedad , Larva/microbiología , Mariposas Nocturnas/microbiología , Reproducibilidad de los Resultados , Salmonelosis Animal/mortalidad , Salmonella typhimurium/genética , Virulencia
13.
PLoS Negl Trop Dis ; 13(6): e0007169, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31163033

RESUMEN

BACKGROUND: Reptile-associated Salmonella bacteria are a major, but often neglected cause of both gastrointestinal and bloodstream infection in humans globally. The diversity of Salmonella enterica has not yet been determined in venomous snakes, however other ectothermic animals have been reported to carry a broad range of Salmonella bacteria. We investigated the prevalence and diversity of Salmonella in a collection of venomous snakes and non-venomous reptiles. METHODOLOGY/PRINCIPLE FINDINGS: We used a combination of selective enrichment techniques to establish a unique dataset of reptilian isolates to study Salmonella enterica species-level evolution and ecology and used whole-genome sequencing to investigate the relatedness of phylogenetic groups. We observed that 91% of venomous snakes carried Salmonella, and found that a diverse range of serovars (n = 58) were carried by reptiles. The Salmonella serovars belonged to four of the six Salmonella enterica subspecies: diarizonae, enterica, houtanae and salamae. Subspecies enterica isolates were distributed among two distinct phylogenetic clusters, previously described as clade A (52%) and clade B (48%). We identified metabolic differences between S. diarizonae, S. enterica clade A and clade B involving growth on lactose, tartaric acid, dulcitol, myo-inositol and allantoin. SIGNIFICANCE: We present the first whole genome-based comparative study of the Salmonella bacteria that colonise venomous and non-venomous reptiles and shed new light on Salmonella evolution. Venomous snakes examined in this study carried a broad range of Salmonella, including serovars which have been associated with disease in humans such as S. Enteritidis. The findings raise the possibility that venomous snakes could be a reservoir for Salmonella serovars associated with human salmonellosis.


Asunto(s)
Variación Genética , Salmonelosis Animal/microbiología , Salmonella enterica/clasificación , Salmonella enterica/aislamiento & purificación , Serpientes/microbiología , Animales , Prevalencia , Serogrupo , Secuenciación Completa del Genoma
14.
PLoS Biol ; 17(1): e3000059, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30645593

RESUMEN

Salmonella Typhimurium sequence type (ST) 313 causes invasive nontyphoidal Salmonella (iNTS) disease in sub-Saharan Africa, targeting susceptible HIV+, malarial, or malnourished individuals. An in-depth genomic comparison between the ST313 isolate D23580 and the well-characterized ST19 isolate 4/74 that causes gastroenteritis across the globe revealed extensive synteny. To understand how the 856 nucleotide variations generated phenotypic differences, we devised a large-scale experimental approach that involved the global gene expression analysis of strains D23580 and 4/74 grown in 16 infection-relevant growth conditions. Comparison of transcriptional patterns identified virulence and metabolic genes that were differentially expressed between D23580 versus 4/74, many of which were validated by proteomics. We also uncovered the S. Typhimurium D23580 and 4/74 genes that showed expression differences during infection of murine macrophages. Our comparative transcriptomic data are presented in a new enhanced version of the Salmonella expression compendium, SalComD23580: http://bioinf.gen.tcd.ie/cgi-bin/salcom_v2.pl. We discovered that the ablation of melibiose utilization was caused by three independent SNP mutations in D23580 that are shared across ST313 lineage 2, suggesting that the ability to catabolize this carbon source has been negatively selected during ST313 evolution. The data revealed a novel, to our knowledge, plasmid maintenance system involving a plasmid-encoded CysS cysteinyl-tRNA synthetase, highlighting the power of large-scale comparative multicondition analyses to pinpoint key phenotypic differences between bacterial pathovariants.


Asunto(s)
Infecciones por Salmonella/genética , Salmonella typhimurium/genética , Animales , Gastroenteritis/microbiología , Perfilación de la Expresión Génica/métodos , Variación Genética/genética , Humanos , Macrófagos , Ratones , Infecciones por Salmonella/microbiología , Virulencia
15.
Proc Natl Acad Sci U S A ; 115(11): E2614-E2623, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29487214

RESUMEN

Salmonella enterica serovar Typhimurium ST313 is a relatively newly emerged sequence type that is causing a devastating epidemic of bloodstream infections across sub-Saharan Africa. Analysis of hundreds of Salmonella genomes has revealed that ST313 is closely related to the ST19 group of S Typhimurium that cause gastroenteritis across the world. The core genomes of ST313 and ST19 vary by only ∼1,000 SNPs. We hypothesized that the phenotypic differences that distinguish African Salmonella from ST19 are caused by certain SNPs that directly modulate the transcription of virulence genes. Here we identified 3,597 transcriptional start sites of the ST313 strain D23580, and searched for a gene-expression signature linked to pathogenesis of Salmonella We identified a SNP in the promoter of the pgtE gene that caused high expression of the PgtE virulence factor in African S. Typhimurium, increased the degradation of the factor B component of human complement, contributed to serum resistance, and modulated virulence in the chicken infection model. We propose that high levels of PgtE expression by African S Typhimurium ST313 promote bacterial survival and dissemination during human infection. Our finding of a functional role for an extragenic SNP shows that approaches used to deduce the evolution of virulence in bacterial pathogens should include a focus on noncoding regions of the genome.


Asunto(s)
Evolución Molecular , Genoma Bacteriano/genética , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , ADN Bacteriano/genética , Epidemias , Humanos , Filogenia , Polimorfismo de Nucleótido Simple/genética , Virulencia/genética , Factores de Virulencia/genética
16.
Front Microbiol ; 8: 235, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28280485

RESUMEN

In the past 30 years, Salmonella bloodstream infections have become a significant health problem in sub-Saharan Africa and are responsible for the deaths of an estimated 390,000 people each year. The disease is predominantly caused by a recently described sequence type of Salmonella Typhimurium: ST313, which has a distinctive set of prophage sequences. We have thoroughly characterized the ST313-associated prophages both genetically and experimentally. ST313 representative strain D23580 contains five full-length prophages: BTP1, Gifsy-2D23580, ST64BD23580, Gifsy-1D23580, and BTP5. We show that common S. Typhimurium prophages Gifsy-2, Gifsy-1, and ST64B are inactivated in ST313 by mutations. Prophage BTP1 was found to be a functional novel phage, and the first isolate of the proposed new species "Salmonella virus BTP1", belonging to the P22virus genus. Surprisingly, ∼109 BTP1 virus particles per ml were detected in the supernatant of non-induced, stationary-phase cultures of strain D23580, representing the highest spontaneously induced phage titer so far reported for a bacterial prophage. High spontaneous induction is shown to be an intrinsic property of prophage BTP1, and indicates the phage-mediated lysis of around 0.2% of the lysogenic population. The fact that BTP1 is highly conserved in ST313 poses interesting questions about the potential fitness costs and benefits of novel prophages in epidemic S. Typhimurium ST313.

17.
Appl Environ Microbiol ; 83(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28039131

RESUMEN

Human enteric pathogens, such as Salmonella spp. and verotoxigenic Escherichia coli, are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens. The identification of the full complement of Salmonella genes involved in the colonization of the model plant (tomato) was carried out using transposon insertion sequencing analysis. With this approach, 230,000 transposon insertions were screened in tomato pericarps to identify loci with reduction in fitness, followed by validation of the screen results using competition assays of the isogenic mutants against the wild type. A comparison with studies in animals revealed a distinct plant-associated set of genes, which only partially overlaps with the genes required to elicit disease in animals. De novo biosynthesis of amino acids was critical to persistence within tomatoes, while amino acid scavenging was prevalent in animal infections. Fitness reduction of the Salmonella amino acid synthesis mutants was generally more severe in the tomato rin mutant, which hyperaccumulates certain amino acids, suggesting that these nutrients remain unavailable to Salmonella spp. within plants. Salmonella lipopolysaccharide (LPS) was required for persistence in both animals and plants, exemplifying some shared pathogenesis-related mechanisms in animal and plant hosts. Similarly to phytopathogens, Salmonella spp. required biosynthesis of amino acids, LPS, and nucleotides to colonize tomatoes. Overall, however, it appears that while Salmonella shares some strategies with phytopathogens and taps into its animal virulence-related functions, colonization of tomatoes represents a distinct strategy, highlighting this pathogen's flexible metabolism.IMPORTANCE Outbreaks of gastroenteritis caused by human pathogens have been increasingly associated with foods of plant origin, with tomatoes being one of the common culprits. Recent studies also suggest that these human pathogens can use plants as alternate hosts as a part of their life cycle. While dual (animal/plant) lifestyles of other members of the Enterobacteriaceae family are well known, the strategies with which Salmonella colonizes plants are only partially understood. Therefore, we undertook a high-throughput characterization of the functions required for Salmonella persistence within tomatoes. The results of this study were compared with what is known about genes required for Salmonella virulence in animals and interactions of plant pathogens with their hosts to determine whether Salmonella repurposes its virulence repertoire inside plants or whether it behaves more as a phytopathogen during plant colonization. Even though Salmonella utilized some of its virulence-related genes in tomatoes, plant colonization required a distinct set of functions.


Asunto(s)
Elementos Transponibles de ADN/genética , Enfermedades de las Plantas/microbiología , Salmonella/genética , Salmonella/metabolismo , Solanum lycopersicum/microbiología , Aminoácidos/biosíntesis , Animales , Proliferación Celular/efectos de los fármacos , ADN Bacteriano , Modelos Animales de Enfermedad , Enterobacteriaceae , Enfermedades Transmitidas por los Alimentos/microbiología , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/fisiología , Humanos , Estadios del Ciclo de Vida , Lipopolisacáridos/farmacología , Solanum lycopersicum/genética , Ratones , Mutación , Nucleótidos/biosíntesis , Salmonella/patogenicidad , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/transmisión , Salmonella enterica/genética , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidad , Análisis de Secuencia , Virulencia/genética
18.
Front Microbiol ; 6: 773, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26284052

RESUMEN

The Hha family of proteins is involved in the regulation of gene expression in enterobacteria by forming complexes with H-NS-like proteins. Whereas several amino acid residues of both proteins participate in the interaction, some of them play a key role. Residue D48 of Hha protein is essential for the interaction with H-NS, thus the D48N substitution in Hha protein abrogates H-NS/Hha interaction. Despite being a paralog of H-NS protein, StpA interacts with HhaD48N with higher affinity than with the wild type Hha protein. To analyze whether Hha is capable of acting independently of H-NS and StpA, we conducted transcriptomic analysis on the hha and stpA deletion strains and the hhaD48N substitution strain of Salmonella Typhimurium using a custom microarray. The results obtained allowed the identification of 120 genes regulated by Hha in an H-NS/StpA-independent manner, 38% of which are horizontally acquired genes. A significant number of the identified genes are involved in functions related to cell motility, iron uptake, and pathogenicity. Thus, motility assays, siderophore detection and intra-macrophage replication assays were performed to confirm the transcriptomic data. Our findings point out the importance of Hha protein as an independent regulator in S. Typhimurium, highlighting a regulatory role on virulence.

19.
Mar Drugs ; 13(6): 3791-808, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26082990

RESUMEN

The A. salmonicida A450 LPS O-antigen, encoded by the wbsalmo gene cluster, is exported through an ABC-2 transporter-dependent pathway. It represents the first example of an O-antigen LPS polysaccharide with three different monosaccharides in their repeating unit assembled by this pathway. Until now, only repeating units with one or two different monosaccharides have been described. Functional genomic analysis of this wbsalmo region is mostly in agreement with the LPS O-antigen structure of acetylated l-rhamnose (Rha), d-glucose (Glc), and 2-amino-2-deoxy-d-mannose (ManN). Between genes of the wbsalmo we found the genes responsible for the biosynthesis and assembly of the S-layer (named A-layer in these strains). Through comparative genomic analysis and in-frame deletions of some of the genes, we concluded that all the A. salmonicida typical and atypical strains, other than A. salmonicida subsp. pectinolytica strains, shared the same wbsalmo and presence of A-layer. A. salmonicida subsp. pectinolytica strains lack wbsalmo and A-layer, two major virulence factors, and this could be the reason they are the only ones not found as fish pathogens.


Asunto(s)
Aeromonas salmonicida/genética , Genoma Bacteriano , Lipopolisacáridos/genética , Antígenos O/genética , Genómica , Familia de Multigenes , Especificidad de la Especie , Factores de Virulencia
20.
Mar Drugs ; 13(4): 2233-49, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25874921

RESUMEN

A group of virulent Aeromonas hydrophila, A. sobria, and A. veronii biovar sobria strains isolated from humans and fish have been described; these strains classified to serotype O11 are serologically related by their lipopolysaccharide (LPS) O-antigen (O-polysaccharide), and the presence of an S-layer consisting of multiple copies of a crystalline surface array protein with a molecular weight of 52 kDa in the form of a crystalline surface array which lies peripheral to the cell wall. A. hydrophila strain AH-1 is one of them. We isolated the LPS from this strain and determined the structure of the O-polysaccharide, which was similar to that previously described for another strain of serotype O11. The genetics of the O11-antigen showed the genes (wbO11 cluster) in two sections separated by genes involved in biosynthesis and assembly of the S-layer. The O11-antigen LPS is an example of an ABC-2-transporter-dependent pathway for O-antigen heteropolysaccharide (disaccharide) assembly. The genes involved in the biosynthesis of the LPS core (waaO11 cluster) were also identified in three different chromosome regions being nearly identical to the ones described for A. hydrophila AH-3 (serotype O34). The genetic data and preliminary chemical analysis indicated that the LPS core for strain AH-1 is identical to the one for strain AH-3.


Asunto(s)
Aeromonas hydrophila/química , Lipopolisacáridos/química , Antígenos O/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Acetilación , Aeromonas hydrophila/enzimología , Aeromonas hydrophila/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Carbohidratos , Cromosomas Bacterianos , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Lipopolisacáridos/genética , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Peso Molecular , Familia de Multigenes , Mutación , Antígenos O/genética , Antígenos O/metabolismo , Antígenos O/farmacología , Proteínas Recombinantes/metabolismo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...